Headway Group Of Research

Volume 7 Issue 3

Comparative Analysis of P2P Architectures for Energy Trading and Sharing

Olamide Jogunola, Augustine Ikpehai, Kelvin Anoh, Bamidele Adebisi, Mohammad Hammoudeh, Haris Gacanin and Georgina Harris

1Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
2Nokia-Bell Labs, Copernicuslaan 50, 2018 Antwerp, Belgium
*Author to whom correspondence should be addressed.

Abstract

Rising awareness and emergence of smart technologies have inspired new thinking in energy system management. Whilst integration of distributed energy resources in micro-grids (MGs) has become the technique of choice for consumers to generate their energy, it also provides a unique opportunity to explore energy trading and sharing amongst them. This paper investigates peer-to-peer (P2P) communication architectures for prosumers’ energy trading and sharing. The performances of common P2P protocols are evaluated under the stringent communication requirements of energy networks defined in IEEE 1547.3-2007. Simulation results show that the structured P2P protocol exhibits a reliability of 99.997% in peer discovery and message delivery whilst the unstructured P2P protocol yields 98%, both of which are consistent with the requirements of MG applications. These two architectures exhibit high scalability with a latency of 0.5 s at a relatively low bandwidth consumption, thus, showing promising potential in their adoption for prosumer to prosumer communication.
Keywords:peer-to-peer architecture (P2P); structured P2P; unstructured P2P; protocols; micro-grid; prosumer; energy trading and sharing (ETS); multi-agent systems; kademlia; gia